inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Emna Ben Zarkouna and Ahmed Driss*

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, Université Tunis-ElManar, 2092 ElManar, Tunis, Tunisia

Correspondence e-mail: ahmed.driss@fst.rnu.tn

Key indicators

Single-crystal X-ray study T = 293 KMean σ (P–O) = 0.003 Å R factor = 0.018 wR factor = 0.047 Data-to-parameter ratio = 11.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

$LiYb(PO_3)_4$

The structure of the lithium ytterbium polyphosphate $LiYb(PO_3)_4$ is described. It consists of a three-dimensional framework made up of spiral $(PO_3)_n$ chains linked by YbO_8 polyhedra. The Li^+ cations reside in the tunnels delimited by the framework. The structure is compared with that of some other compounds like $LiNd(PO_3)_4$, $NaNd(PO_3)_4$, $KNd(PO_3)_4$, $RbNdP_4O_{12}$ and $Yb(PO_3)_3$.

Comment

Mixed polyphosphates involving both alkaline and lanthanide cations are of particular importance because of the laser properties they may exhibit (Yamada *et al.*, 1974). In order to discover new materials with interesting optical properties, we have undertaken the study of the $Li_2O-Yb_2O_3-P_2O_5$ system and have isolated the title compound, $LiYb(PO_3)_4$.

As reported in the literature, polyphosphates with the general formula LiLn(PO₃)₄ [Ln = La (Ferid *et al.*, 1981), Ce (Rzaigui & Ariguib, 1981), Pr (Ferid *et al.*, 1998), Sm (Ferid *et al.*, 1984) and Er (Liu & Li, 1983)] are isotypic to LiNd(PO₃)₄ (Hong, 1975*a*), which is the prototype. Although LiYb(PO₃)₄ and LiNd(PO₃)₄ crystallize in the monoclinic system (space group *C*2/*c*) and have similar unit-cell parameters, some details, especially the position of the Li atoms, make their structures distinctive. In fact, while in LiNd(PO₃)₄ the Li⁺ cations are located on the 4(*a*) site, they are clearly found by Fourier difference syntheses at the 4(*e*) site in the present

Figure 1

Projection of the LiYb(PO₃)₄ structure along the **c** direction, showing the alternation of the (PO₃)_n chains with the rows of Li⁺ and Yb³⁺. [(PO₃)_n chains and cationic rows of Li⁺ and Yb³⁺ generated by centers of symmetry are not shown.]

ses at the 4(e) site in

Received 6 July 2004 Accepted 14 July 2004 Online 24 July 2004

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

Projection of the $LiYb(PO_3)_4$ structure along the **b** direction, showing the association of the YbO₈ polyhedra with the $(PO_3)_n$ chains.

Figure 3

Projection of the LiYb(PO₃)₄ structure along the [101] direction, showing tunnels where Li⁺ cations are located.

structure. In both compounds, the Li atoms are tetracoordinated, but the geometry of their coordination polyhedra is quite different. In LiYb(PO₃)₄ the Li atom is situated within a distorted tetrahedron, with O-Li-O angles ranging between 81.8 (5) and 127.0 (1) $^{\circ}$, whereas in LiNd(PO₃)₄, it is located at the center of a parallelogram. On the basis of symmetry and bonding considerations, the 4(e) site appears more suitable for the Li atom than the 4(a) site.

In $LiYb(PO_3)_4$, the PO₄ tetrahedra share corners to produce infinite helical chains running along the b direction. $(PO_3)_n$ chains alternate with $-Yb^{3+}-Li^+$ rows (Fig. 1). Their period is four PO₄ tetrahedra, as in the structures of the polyphosphates NaNd(PO₃)₄ (Koizumi, 1976) and KNd(PO₃)₄ (Hong, 1975b). However, they lie along the c direction in $NaNd(PO_3)_4$ and in the **a** direction in $KNd(PO_3)_4$. The alternation of the polyphosphate anions $(PO_3)_4^{4-}$ with the rows of Yb3+ and Li+ cations in LiYb(PO3)4 resembles that of the P_4O_{12} rings with the rows of Nd^{3+} and Rb^+ cations in the cyclotetraphosphate RbNdP₄O₁₂ (Koizumi & Nakano, 1977). On the twofold axes, Li⁺ and Yb³⁺ ions are arranged alternately at almost equal spacings (3.496 and 3.528 Å), compared with the quite different spacings of Rb⁺ and Nd³⁺ (3.914 and 8.777 Å) in the RbNdP₄O₁₂ structure. In the title compound, the Yb atoms are octacoordinated. Each YbO₈ polyhedron shares its O atoms with four adjacent $(PO_3)_n$ chains (Fig. 2). The resulting three-dimensional framework delimits tunnels running along the [101] direction where Li⁺ cations are located (Fig. 3). The ytterbium coordination polyhedra are isolated from one another, as in Yb(PO₃)₃ (Hong, 1974). The structures of $LiYb(PO_3)_4$ and $Yb(PO_3)_3$ display shorter $Yb \cdots Yb$ distances of 5.545 and 5.610 Å, respectively. In LiYb(PO₃)₄, the average values of the P1-O, P2-O, Li-O and Yb-O distances are 1.544, 1.540, 1.982 and 2.363 Å, respectively. These values are close to those quoted in the literature (Hong & Pierce, 1974; International Tables for X-ray Crystallography, 1968, Vol. III). Bond-valence-sum values (Brown & Altermatt, 1985) are 4.92, 4.98, 0.99 and 2.81 for P1, P2, Li and Yb, respectively, and are consistent with the cation charges.

Experimental

The synthesis was carried out by a solid-state reaction with the starting materials Li₂CO₃ (Fluka, 99%), Yb₂O₃ (Prolabo, 99.9%) and (NH₄)₂HPO₄ (Fluka, 99%) in a 4:1:15 molar ratio. These ingredients, finely ground, were first heated at 673 K for 5 h and then kept for three weeks at 918 K. A progressive cooling down to 673 K (15 K h^{-1}) followed by a further cooling to room temperature (100 K h^{-1}) led to crystals of LiYb(PO₃)₄.

Crystal data

LiYb(PO ₃) ₄	$D_{\rm x} = 3.764 {\rm Mg m}^{-3}$	
$M_r = 495.86$	Mo $K\alpha$ radiation	
Monoclinic, $C2/c$	Cell parameters from 25	
a = 16.194(3)Å	reflections	
b = 7.024(1) Å	$ heta=10.0{ extstyle=16.0^\circ}$	
c = 9.498 (2) Å	$\mu = 11.49 \text{ mm}^{-1}$	
$\beta = 125.91 \ (1)^{\circ}$	T = 293 (2) K	
$V = 875.0 (3) \text{ Å}^3$	Prism, colorless	
Z = 4	$0.18 \times 0.18 \times 0.14 \text{ mm}$	
Data collection		

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.114, \ T_{\max} = 0.189$ 1009 measured reflections 950 independent reflections 934 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.028$ $\theta_{\rm max} = 27.0^{\circ}$ $h = -16 \rightarrow 20$ $k = 0 \rightarrow 8$ $l = -12 \rightarrow 0$ 2 standard reflections frequency: 120 min

intensity decay: 1%

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0199P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.018$	+ 9.6931P]
$wR(F^2) = 0.047$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.17	$(\Delta/\sigma)_{\rm max} < 0.001$
950 reflections	$\Delta \rho_{\rm max} = 1.10 \text{ e} \text{ Å}^{-3}$
84 parameters	$\Delta \rho_{\rm min} = -1.36 \text{ e } \text{\AA}^{-3}$
	Extinction correction: SHELXL97
	Extinction coefficient: 0.0041 (2)

Table 1

Selected geometric parameters (Å, °).

Li-O2	1.980 (9)	P1-O6 ^v	1.500 (3)
Li-O6 ⁱ	1.984 (9)	$P1-O4^{vi}$	1.590 (3)
Yb-O3 ⁱⁱ	2.259 (3)	P1-O5 ^{vii}	1.595 (3)
Yb-O1	2.314 (3)	P2-O3	1.486 (3)
Yb-O2 ⁱⁱⁱ	2.383 (3)	P2-O2	1.487 (3)
Yb-O6 ^{iv}	2.496 (3)	P2-O5	1.585 (3)
P1-O1	1.491 (3)	P2-O4	1.601 (3)
$O1 - P1 - O6^{v}$	118.6 (2)	O3-P2-O2	120.0 (2)
$O1 - P1 - O4^{vi}$	106.9 (2)	O3-P2-O5	111.8 (2)
$O6^{v} - P1 - O4^{vi}$	110.7 (2)	O2-P2-O5	108.2 (2)
O1-P1-O5 ^{vii}	111.8 (2)	O3-P2-O4	109.7 (2)
$O6^{v} - P1 - O5^{vii}$	105.0 (2)	O2-P2-O4	104.3 (2)
$O4^{vi} - P1 - O5^{vii}$	102.7 (2)	O5-P2-O4	100.9 (2)
6	1	1 1 ("") 1	1 ()

Symmetry codes: (i) 1 + x, y, z; (ii) x - 1, y, z - 1; (iii) 1 - x, -y, 1 - z; (iv) -x, 1 - y, 1 - z; (v) 1 - x, 1 - y, 1 - z; (vii) $x - \frac{1}{2}, \frac{1}{2} - y, z - \frac{1}{2}$.

The highest peak in the final difference map is 0.90 Å from Yb and the deepest hole is 0.89 Å from Yb.

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL97*.

References

- Brandenburg, K. (1998). *DIAMOND*. Version 2.0. Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Ferid, M., Ariguib, N. K. & Trabelsi, M. (1981). J. Solid State Chem. 38, 133– 137.
- Ferid, M., Dogguy, M., Ariguib, N. K. & Trabelsi, M. (1984). J. Solid State Chem. 53, 149–154.
- Ferid, M., Piriou, B. & Trabelsi-Ayedi, M. (1998). J. Therm. Anal. 53, 227–234.
- Harms, K. & Wocadlo, S. (1995). *XCAD4*. University of Marburg, Germany. Hong, H. Y.-P. (1974). *Acta Cryst*. B**30**, 1857–1861.
- Hong, H. Y.-P. (1974). Acta Cryst. B50, 1857–1801. Hong, H. Y.-P. (1975a). Mater. Res. Bull. 10, 635–640.
- Hong, H. Y.-P. (1975a). Mater. Res. Bull. 10, 055–040. Hong, H. Y.-P. (1975b). Mater. Res. Bull. 10, 1105–1110.
- Hong, H. Y.-P. & Pierce, J. W. (1974). *Mater. Res. Bull.* 9, 179–190.
- Koizumi, H. (1976). Acta Cryst. B**32**, 2254–2256.
- Koizumi, H. & Nakano, J. (1977). *Acta Cryst.* B32, 2234–2236.
- Liu, J.-C. & Li, D.-Y. (1983). Acta Phys. Sin. 32, 786–790.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). *Acta Cryst.* A**24**, 351–359.
- Rzaigui, M. & Ariguib, N. K. (1981). J. Solid State Chem. 39, 309-313.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.
- Yamada, T., Otsuka, K. & Nakano, J. (1974). J. Appl. Phys. 45, 5096-5097.